Selasa, 15 Mei 2012

Macam-Macam Fungsi


Tugas Matematika
Macam-Macam Fungsi
X.H

http://upload.wikimedia.org/wikipedia/commons/thumb/9/96/Graph_of_example_function.svg/250px-Graph_of_example_function.svg.png



Disusun oleh
Olyvia Ugizaqiah. HP






DINAS PENDIDIKAN SMA NEGERI 2 KOTA BENGKULU
TAHUN AJARAN 2011/ 2012
A.   PENGERTIAN FUNGSI

Fungsi, dalam istilah matematika adalah pemetaan setiap anggota sebuah himpunan (dinamakan sebagai domain) kepada anggota himpunan yang lain (dinamakan sebagai kodomain). Istilah ini berbeda pengertiannya dengan kata yang sama yang dipakai sehari-hari, seperti “alatnya berfungsi dengan baik.” Konsep fungsi adalah salah satu konsep dasar dari matematika dan setiap ilmu kuantitatif. Istilah "fungsi", "pemetaan", "peta", "transformasi", dan "operator" biasanya dipakai secara sinonim.
Anggota himpunan yang dipetakan dapat berupa apa saja (kata, orang, atau objek lain), namun biasanya yang dibahas adalah besaran matematika seperti bilangan riil. Contoh sebuah fungsi dengan domain dan kodomain himpunan bilangan riil adalah y=f(2x), yang menghubungkan suatu bilangan riil dengan bilangan riil lain yang dua kali lebih besar. Dalam hal ini kita dapat menulis f(5)=10.













B.   JENIS-JENIS FUNGSI

1) Fungsi konstan (fungsi tetap)
Fungsi konstan adalah fungsi  yang dinyatakan dalam rumus f(x) = c, dengan c suatu
konstanta. Grafiknya jika dilukis dalam suatu sumbu koordinat dimana domainnya sumbu x merupakan garis yang sejajar dengan sumbu x.
Fungsi konstan ditulis sebagai:
f: x          f(x) = k

2) Fungsi linear
Suatu fungsi f(x) disebut fungsi linear apabila fungsi itu ditentukan oleh
f(x) = ax + b, di mana a ≠ 0, a dan b bilangan konstan dan grafiknya berupa
garis lurus.

3) Fungsi kuadrat
Suatu fungsi f(x) disebut fungsi kuadrat apabila fungsi itu ditentukan oleh
f(x) = ax2 + bx + c, di mana a ≠ 0 dan a, b, dan c bilangan konstan dan
grafiknya berupa parabola.

4) Fungsi identitas
Suatu fungsi f(x) disebut fungsi identitas apabila setiap anggota domain fungsi
berlaku f(x) = x atau setiap anggota domain fungsi dipetakan pada dirinya sendiri.
Grafik fungsi identitas berupa garis lurus yang melalui titik asal dan semua titik absis maupun ordinatnya sama. Fungsi identitas ditentukan oleh f(x) = x.

5) Fungsi tangga (bertingkat)
Suatu fungsi f(x) disebut fungsi tangga apabila grafik fungsi f(x) berbentuk
interval-interval yang sejajar.

6) Fungsi modulus
Suatu fungsi f(x) disebut fungsi modulus (mutlak) apabila fungsi ini memetakan
setiap bilangan real pada domain fungsi ke unsur harga mutlaknya.

7) Fungsi ganjil dan fungsi genap
Suatu fungsi f(x) disebut fungsi ganjil apabila berlaku f(–x) = –f(x) dan disebut
fungsi genap apabila berlaku f(–x) = f(x). Jika f(–x) ≠ –f(x) maka fungsi ini
tidak genap dan tidak ganjil.

8
) Fungsi Polinomial
Fungsi Polinomial adalah fungsi f yang dinyatakan dalam bentuk :
f(x) = an x n + an-1 x n-1 + ……. A2 x 2 + a1 x a0
Jika n = 1 maka terbentuk fungsi linier (grafiknya berbentuk garis lurus).
Jika n = 2 maka terbentuk fungsi kuadrat( grafiknya berbentuk parabola).

9) Fungsi invers
adalah kebalikan dari fungsi untuk membentuk kebalikan dari fungsi sebenarnya. Apa gunanya fungsi ini? Fungsi ini utk mencari cari identitas fungsi sedemikian sehingga fungsi sebenarnya jika dikalikan dengan fungsi invers menghasilkan 1. Jika dalam bentuk vektor adalah vektor identik.

10) Fungsi logaritma
Fungsi ini berperan pada persoalan-2 statistik dan probabilitas. Dan lebih banyak kepada persoalan-2 diskrit. Contoh: bagaimana mengatur agar antrian pembelian bensin sedemikian sehingga pada saat-2 tertentu pegawai pelayanan diperbanyak. Misal pada pembayaran rekening listrik, para konsumen lebih banyak membayar pada akhir tagihan daripada awal-awal penagihan. Sangat bijak manajer mengatur agar pada hari-2 terakhir pegawainya hrus membantuk bagian kasir untuk melayani konsumen.


11) Fungsi injektif
Fungsi f: A → B disebut fungsi satu-satu atau fungsi injektif jika dan hanya jika untuk sebarang a1 dan a2  \in Adengan a1 tidak sama dengan a2 berlaku f(a1) tidak sama dengan f(a2). Dengan kata lain, bila a1 = a2 maka f(a1) sama dengan f(a2).
12) Fungsi surjektif
Fungsi f: A → B disebut fungsi kepada atau fungsi surjektif jika dan hanya jika untuk sebarang b dalam kodomain B terdapat paling tidak satu a dalam domain A sehingga berlaku f(a) = b. Dengan kata lain, suatu kodomain fungsi surjektif sama dengan kisarannya (range).
13) Fungsi bijektif
Fungsi f: A → B disebut disebut fungsi bijektif jika dan hanya jika untuk sebarang b dalam kodomain B terdapat tepat satu a dalam domain A sehingga f(a) = b, dan tidak ada anggota A yang tidak terpetakan dalam B. Dengan kata lain, fungsi bijektif adalah sekaligus injektif dan surjektif

14 komentar: